中帝人提示您:看后求收藏(春雷小说clqcjtz.com),接着再看更方便。
=a+b,如果这3个数互质,没有大于1的公共因子,那么将这3个数不重复的质因子相乘得到的d,看似通常会比c大。
举个例子:a=2,b=7,c=a+b=9=3*3。
这3个数是互质的,那么不重复的因子相乘就有d=2*7*3=42>c=9。
大家还可以实验几组数,比如:3+7=10,4+11=15,也都满足这个看起来正确的规律。
但是,这只是看起来正确的规律,实际上存在反例!
由荷兰莱顿大学数学研究所运营的ABC@home网站就在用基于BOINC的分布式计算平台分布式计算寻找ABC猜想的反例,其中一个反例是3+125=128:其中125=5^3
,128=2^7,那么不重复的质因子相乘就是3*5*2=30,128比30要大。
事实上,计算机能找到无穷多的这样反例。
于是我们可以这样表述ABC猜想,d“通常”不比c“小太多”。
怎么叫通常不比c小太多呢?